Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Spectrochim Acta A Mol Biomol Spectrosc ; 310: 123880, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38277789

RESUMEN

In this work, a series of ZL003-based free-metal sensitizers with the donor-acceptor-π- conjugated spacer-acceptor (D-A-π-A) structure were designed by modifying auxiliary electron acceptors for the potential application in dye-sensitized solar cells. The energy levels of frontier molecular orbitals, absorption spectra, electronic transition, and photovoltaic parameters for all studied dyes were systematically evaluated using density functional theory (DFT)/time-dependent DFT calculations. Results illustrated that thienopyrazine (TPZ), selenadiazolopyridine (SDP), and thiadiazolopyridine (TDP) are excellent electron acceptors, and dye sensitizers functionalized by these acceptors have smaller HOMO-LUMO gaps, obviously red-shifted absorption bands and stronger light harvesting. The present study revealed that the photoelectric conversion efficiency (PCE) of ZL003 is around 13.42 % with a JSC of 20.21 mA·cm-2, VOC of 966 mV and FF of 0.688 under the AM 1.5G sun exposure, in good agreement with its experimental value (PCE = 13.6 ± 0.2 %, JSC = 20.73 ± 0.20 mA·cm-2, VOC = 956 ± 5 mV, and FF = 0.685 ± 0.005.). With the same procedure, the PCE values for M4, M6, and M7 were estimated to be as high as 19.93 %, 15.38 %, and 15.80 % respectively. Hence, these three dyes are expected to be highly efficient organic sensitizers applied in practical DSSCs.

3.
BMC Geriatr ; 24(1): 55, 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38216896

RESUMEN

BACKGROUND: Numerous studies have demonstrated a positive correlation between diet quality and cognitive performance, indicating that improving diet quality may be beneficial in preventing cognitive decline in older adults. However, few study has investigated the causal relationship between diet quality and cognitive performance. The purpose of this study is to evaluate the causal effects of diet quality on cognitive performance in Chinese adults aged 55 years and older. Particularly, we utilize the Chinese Diet Quality Index (CHEI), a dietary assessment tool tailored for Chinese populations, as a proxy for older adults' diet quality. METHODS: Data were obtained from the China Health and Nutrition Survey (CHNS) ([Formula: see text], [Formula: see text]55 years old) conducted in 2004 and 2006. Cognitive function was tested by a subset of items from the Telephone Interview for Cognitive Status-Modified (TICS-m). Data on dietary intake was retrieved from three consecutive 24 hour recalls by participants and its quality was assessed by the 17-items Chinese Healthy Eating Index (CHEI). An Instrumental Variable technique was used to deal with the potential endogeneity of dietary quality. The instrumental variable used in our study is the community mean of CHEI. RESULTS: After adjusting for socio-demographic factors (age, gender, education, per capita household income), lifestyle habits (smoking, alcohol consumption, physical activity, BMI), and chronic diseases (hypertension, diabetes), our findings revealed that improving diet quality had a significant positive effect on cognitive performance ([Formula: see text]), particularly in females aged 55-65 years ([Formula: see text]) and females with primary education and below ([Formula: see text]). CONCLUSION: Our study suggests that improving diet quality and adhering to the Dietary Guidelines for Chinese may enhance cognitive performance in Chinese adults aged 55 years and older.


Asunto(s)
Dieta , Estado Nutricional , Femenino , Humanos , Anciano , Encuestas Nutricionales , Dieta Saludable , Cognición , China/epidemiología
4.
Phys Chem Chem Phys ; 26(6): 5558-5568, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38284214

RESUMEN

Rare base-pairs consists of guanine (G) paired with rare bases, such as 5-methylcytosine (5-meCyt), 5-hydroxymethylcytosine (5-hmCyt), 5-carboxylcytosine (5-caCyt), and 5-formylcytosine (5-fCyt), have become the focus of epigenetic research because they can be used as markers to detect some chronic diseases and cancers. However, the correlation detection of these rare base-pairs is limited, which in turn limits the development of diagnostic tests and devices. Herein, the interaction of rare base-pairs adsorbed on pure and B/N-doped γ-graphyne (γ-GY) nanosheets was explored using the density functional theory. The calculated adsorption energy showed that the system of rare base-pairs on B-doped γ-GY is more stable than that on pure γ-GY or N-doped γ-GY. Translocation time values indicate that rare base-pairs can be successfully distinguished as the difference in their translocation times is very large for pure and B/N-doped γ-GY nanosheets. Meanwhile, sensing response values illustrated that pure and B-doped γ-GY are the best for G-5-hmCyt adsorption, while the N-doped γ-GY is the best for G-Cyt adsorption. The findings indicate that translocation times and sensing response can be used as detection indexes for pure and B/N doped γ-GY, which will provide a new way for experimental scientists to develop the biosensor components.


Asunto(s)
Adsorción , Emparejamiento Base
5.
Mol Neurobiol ; 61(3): 1417-1432, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37721688

RESUMEN

Reperfusion is an essential pathological stage in hypoxic ischemic encephalopathy (HIE). Although the Rice-Vannucci model is widely used in HIE research, it remains difficult to replicate HIE-related reperfusion brain injury. The purpose of this study is to establish a rat model of hypoxia ischemia reperfusion brain damage (HIRBD) using a common carotid artery (CCA) muscle bridge in order to investigate the mechanisms of cerebral resistance to hypoxic-ischemic and reperfusion brain damage. Random assignment of Sprague-Dawley (SD) rats to the Sham, HIRBD, and Rice-Vannucci groups. Changes in body weight, mortality rate, spontaneous alternation behavior test (SAB test), and dynamic changes in cerebral blood flow (CBF) were detected. The damaged cerebral cortices were extracted for morphological comparison, transcriptomic analysis, and quantitative real-time PCR. Harvesting the hippocampus for transmission electron microscopy (TEM) detection. As a result, CCA muscle bridge could effectively block CBF, which recovered after the muscle bridge detachment. Pathological comparison, the SAB test, and TEM analysis revealed that brain damage in Rice-Vannucci was more severe than HIRBD. Gpx1, S100a6, Cldn5, Esr1, and Gfap were highly expressed in both HIRBD and Rice-Vannucci. In conclusion, the CCA muscle bridge-established HIRBD model could be used as an innovative and dependable model to simulate pathological process of HIRBD.


Asunto(s)
Lesiones Encefálicas , Hipoxia-Isquemia Encefálica , Daño por Reperfusión , Ratas , Animales , Hipoxia-Isquemia Encefálica/complicaciones , Hipoxia-Isquemia Encefálica/patología , Ratas Sprague-Dawley , Encéfalo/patología , Lesiones Encefálicas/patología , Hipoxia/patología , Reperfusión , Daño por Reperfusión/complicaciones , Daño por Reperfusión/patología , Animales Recién Nacidos
6.
ACS Appl Mater Interfaces ; 15(50): 58784-58793, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38084743

RESUMEN

The design and synthesis of high-efficiency electrocatalysts are of great practical significance in electrocatalytic water splitting, specifically in accelerating the slow oxygen evolution reaction (OER). Herein, a self-supported bismuth-doped NiFe layered double hydroxide (LDH) nanosheet array for water splitting was successfully constructed on nickel foam by a one-step hydrothermal strategy. Benefiting from the abundant active sites of two-dimensional nanosheets and electronic effect of Bi-doped NiFe LDH, the optimal Bi0.2NiFe LDH electrocatalyst exhibits excellent OER performance in basic media. It only requires an overpotential of 255 mV to drive 50 mA cm-2 and a low Tafel slope of 57.49 mV dec-1. The calculation of density functional theory (DFT) further shows that the incorporation of Bi into NiFe LDH could obviously overcome the step of H2O adsorption during OER progress. This work provides a simple and effective strategy for improving the electrocatalytic performance of NiFe LDHs, which is of great practical significance.

7.
Plant Dis ; 2023 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-37807089

RESUMEN

Konjac (Amorphophallus konjac) is a perennial herbaceous plant of the Araceae family, cultivated mainly in south-western China and used extensively for weight loss (Chua et al. 2010). In June 2022, leaf blight was detected on a 2,00 ha A. konjac plantation in Chenxi County, Huaihua City, Hunan Province. It infected almost 20% of the area under cultivation and tends to occur each year during warm, humid weather from May to July, causing significant economic losses to A. konjac production. There were small brown spots on the leaves which gradually spread to form irregular brown lesions. In severe cases the entire plant turned yellow and died. Nine samples were collected randomly from different plants in three plantation forests to isolate the pathogens. They were washed with sterile water and the lesions were excised. They were subsequently disinfected with 3% hydrogen peroxide for 30 s, 75% ethanol for 90 s and rinsed three times with sterile water. The cut sections were then placed on water agar plates and grown in the dark in a constant temperature incubator at 28℃ for 3-5 days, when mycelia grew they were transferred to potato dextrose agar medium and grown in the dark at 28℃ for 3-5 days. Eleven purified fungal isolates were obtained, ten of which looked like Fusarium (90.9% isolation rate), and three representative isolates (MY5, MY7 and MY9) were chosen for further study. The fungal colonies initially appeared white and gradually turnned dark red. Macroconidia were crescent-shaped, elongated, slightly curved and had 2 to 4 septations, with a predominance of 3 septations. They measured 15.540 to 42.083 × 2.760 to 4.558 µm (n=100). Microconidia were oval or pyriform, with a maximum of one septum and measured 6.135 to 24.990 × 2.158 to 4.412 µm (n=100). Two genetic regions, the translation elongation factor-1 (TEF1-α) and RNA polymerase II largest subunit (RPB1) genes, were amplified and sequenced to verify the identity of the fungus (Qiu et al. 2023). The universal primers TEF1-F/R, G2R/Fa were used for amplification and sequencing, and the sequences were submitted to GenBank (TEF1-α: OR545395, OR545397, OR545399; RPB1: OR545394, OR545396, OR545398). A joint phylogenetic tree of the two genes was constructed and analysis showed that the three isolates were significantly clustered with Fusarium tricinctum. Based on the results of morphological identification and phylogenetic tree analysis, the three isolates were identified as F. tricinctum. Pathogenicity tests were carried out on 12 uniformly growing leaf expansion stages of konjac plants,each inoculated with five young leaves. Mycelial blocks of 6 × 6 mm grown on PDA media for 5 days were placed on the surface of the leaves, while sterile PDA blocks were placed on the control plant. After 10 days of rearing the treated plants in a constant temperature chamber at 28°C and 90% relative humidity, the lesions appeared and the pathogens re-isolated from the diseased tissues had the same morphological characteristics as representative isolates. F. tricinctum has been shown to be the major pathogenic fungus causing leaf blight in wheat (Triticum aestivum L.) (Castañares et al. 2011) and orchardgrass (Dactylis glomerata L.) (Wu et al. 2020). To our knowledge, this is the first time in the world that F. tricinctum has been reported to cause leaf blight in A. konjac. This research could provide a foundation for future control of leaf blight disease.

8.
Phys Chem Chem Phys ; 25(42): 28885-28894, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37853821

RESUMEN

The products resulting from the reactions between atmospheric acids and SO3 have a catalytic effect on the formation of new particles in aerosols. However, the SO3 + HCl reaction in the gas-phase and at the air-water interface has not been considered. Herein, this reaction was explored exhaustively by using high-level quantum chemical calculations and Born Oppenheimer molecular dynamics (BOMD) simulations. The quantum calculations show that the gas-phase reaction of SO3 + HCl is highly unlikely to occur under atmospheric conditions with a high energy barrier of 22.6 kcal mol-1. H2O and (H2O)2 play obvious catalytic roles in reducing the energy barrier of the SO3 + HCl reaction by over 18.2 kcal mol-1. The atmospheric lifetimes of SO3 show that the (H2O)2-assisted reaction dominates over the H2O-assisted reaction within the altitude range of 0-5 km, whereas the H2O-assisted reaction is more favorable within an altitude range of 10-50 km. BOMD simulations show that H2O-induced formation of the ClSO3-⋯H3O+ ion pair and HCl-assisted formation of the HSO4-⋯H3O+ ion pair were identified at the air-water interface. These routes followed a stepwise reaction mechanism and proceeded at a picosecond time scale. Interestingly, the formed ClSO3H in the gas phase has a tendency to aggregate with sulfuric acids, ammonias, and water molecules to form stable clusters within 40 ns simulation time, while the interfacial ClSO3- and H3O+ can attract H2SO4, NH3, and HNO3 for particle formation from the gas phase to the water surface. Thus, this work will not only help in understanding the SO3 + HCl reaction driven by water molecules in the gas-phase and at the air-water interface, but it will also provide some potential routes of aerosol formation from the reaction between SO3 and inorganic acids.

9.
J Phys Chem A ; 127(42): 8935-8942, 2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37844321

RESUMEN

NH2SO3H is an effective nucleation agent for the formation of atmospheric aerosols and cloud particles. So, the ammonolysis of SO3 to form NH2SO3H without and with neutral (H2O) and basic (NH3) trace gases has been extensively investigated. However, the acidic trace gas X (X = H2SO4 and CH3SO3H)-assisted ammonolysis of SO3 is still up for debate. In this work, a comprehensive theoretical investigation of X-assisted ammonolysis of SO3 and its reverse reaction (the isomerization of NH2SO3H to form SO3-···NH3+) was carried out in the gas phase and at the air-water interface. The gas-phase results show that X-assisted isomerization of NH2SO3H to form SO3-···NH3+ is more energetically and kinetically favorable than its reverse reaction and the isomerization of NH2SO3H in the presence of H2O and NH3. Such unexpected findings revealed that gas-phase NH2SO3H is highly reactive in the presence of acidic trace gas in contrast to the high stability of NH2SO3H in neutral and basic conditions. At the air-water interface, the X-assisted isomerization reaction of NH2SO3H involves multiple water molecules. The loop structure of the reaction center (X···NH2SO3H···3H2O) promotes the transfer of protons in the water molecules to form the SO3-···NH3+ ion pair, which can then interact with several interfacial water molecules to form ammonium bisulfate. These interfacial reaction channels follow a stepwise mechanism and proceed at the picosecond time-scale. The findings of this study will contribute to a better understanding of the atmospheric behavior of NH2SO3H in polluted acidic trace gases.

10.
Plants (Basel) ; 12(17)2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37687277

RESUMEN

WRKY proteins are a superfamily of transcription factors (TFs) that play multiple roles in plants' growth, development, and environmental stress response. In this study, a novel WRKY gene called GsWRKY23 that is specifically upregulated in salt-tolerant Glycine soja accession BB52 seedlings was identified by transcriptomic analysis under salt stress. How the physiological functions and mechanisms of the GsWRKY23 gene affect salt tolerance was investigated using transformations of soybean hairy roots and Arabidopsis, including wild-type (WT) and atwrky23-mutant plants. The results showed that GsWRKY23 in the roots, stems, and leaves of BB52, along with its promoter in the cotyledons and root tips of GsWRKY23pro::GUS Arabidopsis seedlings, displayed enhanced induction under salt stress. GsWRKY23 localises to the nucleus and shows transcriptional activation ability in yeast cells. Compared to GsWRKY23-RNAi wild soybean hairy-root composite plants under salt stress, obvious improvements, such as superior growth appearance, plant height and fresh weight (FW), and leaf chlorophyll and relative water content (RWC), were displayed by GsWRKY23-overexpressing (OE) composite plants. Moreover, their relative electrolytic leakage (REL) values and malondialdehyde (MDA) contents in the roots and leaves declined significantly. Most of the contents of Na+ and Cl- in the roots, stems, and leaves of GsWRKY23-OE plants decreased significantly, while the content of K+ in the roots increased, and the content of NO3- displayed no obvious change. Ultimately, the Na+/K+ ratios of roots, stems, and leaves, along with the Cl-/NO3- ratios of roots and stems, decreased significantly. In the transgenic WT-GsWRKY23 and atwrky23-GsWRKY23 Arabidopsis seedlings, the salt-induced reduction in seed germination rate and seedling growth was markedly ameliorated; plant FW, leaf chlorophyll content, and RWC increased, and the REL value and MDA content in shoots decreased significantly. In addition, the accumulation of Na+ and Cl- decreased, and the K+ and NO3- levels increased markedly to maintain lower Na+/K+ and Cl-/NO3- ratios in the roots and shoots. Taken together, these results highlight the role of GsWRKY23 in regulating ionic homeostasis in NaCl-stressed overexpressed soybean composite plants and Arabidopsis seedlings to maintain lower Na+/K+ and Cl-/NO3- ratios in the roots and shoots, thus conferring improved salt tolerance.

11.
Molecules ; 28(14)2023 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-37513430

RESUMEN

For the purpose of regulating the visible-light-driven photocatalytic properties of photocatalysts, we selected BiOBr as the research target and various routes were used. Herein, via the use of a hydrothermal method with various solvents, BiOBr particles with controllable morphology and photocatalytic activities are obtained. In particular, through changing the volume ratio of ethylene glycol (EG) to ethanol (EtOH), BiOBr compounds possess microspheres, in which samples synthesized by using EG:EtOH = 1:2 have the highest photocatalytic activity, and can completely decompose RhB under visible light irradiation within 14 min. Furthermore, we also used different volume ratios of EG and H2O reaction solvents to prepare BiOBr particles so as to further improve its pollutant removal ability. When the volume ratio of EG to H2O is 1:1, the synthesized BiOBr particles have the best photocatalytic activity, and RhB can be degraded in only 10 min upon visible light irradiation. Aside from the reaction solvent, the impact of sintering temperature on the photocatalytic properties of BiOBr particles is also explored, where its pollutant removal capacities are restrained due to the reduced specific surface area. Additionally, the visible-light-triggered photocatalytic mechanism of BiOBr particles is determined by h+, ·OH and ·O2- active species.

12.
Phys Chem Chem Phys ; 25(23): 15693-15701, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37272831

RESUMEN

Liu et al. (Proc. Natl. Acad. Sci. U. S. A, 2019, 116, 24966-24971) showed that at an altitude of 0 km, the reaction of SO3 with CH3OH to form CH3OSO3H reduces the amount of H2SO4 produced by the hydrolysis of SO3 in regions polluted with CH3OH. However, the influence of the water molecule has not been fully considered yet, which will limit the accuracy of calculating the loss of SO3 in regions polluted with CH3OH. Here, the influence of water molecules on the SO3 + CH3OH reaction in the gas phase and at the air-water interface was comprehensively explored by using high-level quantum chemical calculations and Born-Oppenheimer molecular dynamics (BOMD) simulations. Quantum chemical calculations show that both pathways for the formation of CH3OSO3H and H2SO4 with water molecules have greatly lowered energy barriers compared to the naked SO3 + CH3OH reaction. The effective rate coefficients reveal that H2O-catalyzed CH3OSO3H formation (a favorable route for CH3OSO3H formation) can be competitive with H2O-assisted H2SO4 formation (a favorable process for H2SO4 formation) at high altitudes up to 15 km. BOMD simulations found that H2O-induced formation of the CH3OSO3-⋯H3O+ ion pair and CH3OH-assisted formation of HSO4- and H3O+ ions were observed at the droplet surface. These interfacial routes followed a loop-structure or chain reaction mechanism and proceeded on a picosecond time scale. These results will contribute to better understanding of SO3 losses in the polluted areas of CH3OH.

13.
Neural Regen Res ; 18(10): 2229-2236, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37056142

RESUMEN

Hypoxic-ischemic encephalopathy, which predisposes to neonatal death and neurological sequelae, has a high morbidity, but there is still a lack of effective prevention and treatment in clinical practice. To better understand the pathophysiological mechanism underlying hypoxic-ischemic encephalopathy, in this study we compared hypoxic-ischemic reperfusion brain injury and simple hypoxic-ischemic brain injury in neonatal rats. First, based on the conventional Rice-Vannucci model of hypoxic-ischemic encephalopathy, we established a rat model of hypoxic-ischemic reperfusion brain injury by creating a common carotid artery muscle bridge. Then we performed tandem mass tag-based proteomic analysis to identify differentially expressed proteins between the hypoxic-ischemic reperfusion brain injury model and the conventional Rice-Vannucci model and found that the majority were mitochondrial proteins. We also performed transmission electron microscopy and found typical characteristics of ferroptosis, including mitochondrial shrinkage, ruptured mitochondrial membranes, and reduced or absent mitochondrial cristae. Further, both rat models showed high levels of glial fibrillary acidic protein and low levels of myelin basic protein, which are biological indicators of hypoxic-ischemic brain injury and indicate similar degrees of damage. Finally, we found that ferroptosis-related Ferritin (Fth1) and glutathione peroxidase 4 were expressed at higher levels in the brain tissue of rats with hypoxic-ischemic reperfusion brain injury than in rats with simple hypoxic-ischemic brain injury. Based on these results, it appears that the rat model of hypoxic-ischemic reperfusion brain injury is more closely related to the pathophysiology of clinical reperfusion. Reperfusion not only aggravates hypoxic-ischemic brain injury but also activates the anti-ferroptosis system.

15.
iScience ; 26(3): 106158, 2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-36843839

RESUMEN

Zygotic genome activation (ZGA) is initiated once the genome chromatin state is organized in the newly formed zygote. Telomeres are specialized chromatin structures at the ends of chromosomes and are reset during early embryogenesis, while the details and significance of telomere changes in preimplantation embryos remain unclear. We demonstrated that the telomere length was shortened in the minor ZGA stage and significantly elongated in the major ZGA stage of human and mouse embryos. Expression of the ZGA pioneer factor DUX4/Dux was negatively correlated with the telomere length. ATAC sequencing data revealed that the chromatin accessibility peaks on the DUX4 promoter region (i.e., the subtelomere of chromosome 4q) were transiently augmented in human minor ZGA. Reduction of telomeric heterochromatin H3K9me3 in the telomeric region also synergistically activated DUX4 expression with p53 in human embryonic stem cells. We propose herein that telomeres regulate the expression of DUX4/Dux through chromatin remodeling and are thereby involved in ZGA.

16.
Langmuir ; 39(2): 739-749, 2023 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-36596649

RESUMEN

Polymeric ionic liquid (such as poly[ViEtIm]Br)-modified reduced graphene oxide (rGO), rGO-poly[ViEtIm]Br, was nominated as an open carrier to construct a degradation platform. The large specific surface of rGO together with the anion-exchange property of poly[ViEtIm]Br terminals led to the wide growth of heteropolyanions (like [PW12O40]3-, [PMo12O40]3-, and [SiW12O40]4-), thus assembling the integrated catalyst rGO-poly[ViEtIm][heteropolyanions]. The grafted poly[ViEtIm]Br provided an anchor point to interlink the polar heteropolyanions and the nonpolar rGO substrate, endowing this graphene-based catalyst with excellent dispersibility. The adequate exposure of heteropolyanions further promoted the decolorization capability during the degradation procedure. Morphology, structure, and properties of materials were confirmed and monitored via transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), ultraviolet-visible (UV-vis) spectroscopy, etc. rGO-poly[ViEtIm][PW12O40] was selected as the optimal catalyst with degradation efficiency toward methyl orange reaching 98.7% in 3 h. In addition, the excellent structural stability of the catalyst improved the decolorization efficiency, which reached 95% after recycling five times.

17.
Chin Med ; 18(1): 10, 2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36717898

RESUMEN

BACKGROUND: Traditional Chinese medicine (TCM) posits that Chinese medicinal materials can only be clinically used after being processed and prepared into decoction pieces. Schisandra Chinensis Fructus (derived from the dried and mature fruits of Schisandra chinensis (Turcz.) Baill.) has been used as a traditional antiasthmatic, kidney strengthening, and hepatoprotective agent for 2000 years. The results of previous research show that decoction pieces of wine-steamed Schisandra chinensis (WSC) are more effective than raw decoction pieces of Schisandra chinensis (RSC) for treating cough and asthma. Steaming with wine was demonstrated to promote the dissolution of ingredients. However, the relationship between the changes in the components of the decoction pieces of WSC and the therapeutic effect remains unclear. METHODS: The efficacies of decoctions of RSC and WSC were compared using allergic asthma rats. The potential bioactive components in the serum of the WSC treatment group and the changes in the chemical composition of the RSC decoction pieces before and after wine steaming were determined by ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS/MS) and ultra-high-performance liquid chromatography tandem mass spectrometry (UPLC H-CLASS XEVO TQD) to speculate quality markers (Q-markers) related to the efficacy of WSC, which were subsequently verified based on a zebrafish inflammation model. RESULTS: Steaming RSC decoction pieces with wine was found to promote improvement of allergic asthma. Reverse tracing of 22 components detected in the serum of the high dose group of WSC (WSC-H) resulted in 12 ingredients being finally designated as potential effective components. Among these ingredients, 5 components, Schisandrin, Schisandrol B, Schisandrin A, Schisandrin B, and Gomisin D, had higher dissolution rates than RSC after steaming with wine. Validation by an inflammatory zebrafish model showed that these 5 ingredients had a dose-dependent effect and were therefore Q-markers for WSC in the treatment of allergic asthma. CONCLUSION: In this study, changes in the components of decoction pieces of RSC and WSC and Q-markers related to WSC efficacy were identified, providing valuable information for expanding the application of WSC and establishing a specific quality standard for WSC.

18.
J Environ Sci (China) ; 127: 308-319, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36522063

RESUMEN

Given the high abundance of water in the atmosphere, the reaction of Criegee intermediates (CIs) with (H2O)2 is considered to be the predominant removal pathway for CIs. However, recent experimental findings reported that the reactions of CIs with organic acids and carbonyls are faster than expected. At the same time, the interface behavior between CIs and carbonyls has not been reported so far. Here, the gas-phase and air-water interface behavior between Criegee intermediates and HCHO were explored by adopting high-level quantum chemical calculations and Born-Oppenheimer molecular dynamics (BOMD) simulations. Quantum chemical calculations evidence that the gas-phase reactions of CIs + HCHO are submerged energy or low energy barriers processes. The rate ratios speculate that the HCHO could be not only a significant tropospheric scavenger of CIs, but also an inhibitor in the oxidizing ability of CIs on SOx in dry and highly polluted areas with abundant HCHO concentration. The reactions of CH2OO with HCHO at the droplet's surface follow a loop structure mechanism to produce i) SOZ (), ii) BHMP (HOCH2OOCH2OH), and iii) HMHP (HOCH2OOH). Considering the harsh reaction conditions between CIs and HCHO at the interface (i.e., the two molecules must be sufficiently close to each other), the hydration of CIs is still their main atmospheric loss pathway. These results could help us get a better interpretation of the underlying CIs-aldehydes chemical processes in the global polluted urban atmospheres.


Asunto(s)
Atmósfera , Agua , Agua/química , Atmósfera/química , Aldehídos
19.
PLoS One ; 17(12): e0280043, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36584071

RESUMEN

[This corrects the article DOI: 10.1371/journal.pone.0166177.].

20.
Neurosci Bull ; 38(12): 1559-1568, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35939199

RESUMEN

Recording the highly diverse and dynamic activities in large populations of neurons in behaving animals is crucial for a better understanding of how the brain works. To meet this challenge, extensive efforts have been devoted to developing functional fluorescent indicators and optical imaging techniques to optically monitor neural activity. Indeed, optical imaging potentially has extremely high throughput due to its non-invasive access to large brain regions and capability to sample neurons at high density, but the readout speed, such as the scanning speed in two-photon scanning microscopy, is often limited by various practical considerations. Among different imaging methods, light field microscopy features a highly parallelized 3D fluorescence imaging scheme and therefore promises a novel and faster strategy for functional imaging of neural activity. Here, we briefly review the working principles of various types of light field microscopes and their recent developments and applications in neuroscience studies. We also discuss strategies and considerations of optimizing light field microscopy for different experimental purposes, with illustrative examples in imaging zebrafish and mouse brains.


Asunto(s)
Microscopía , Neurociencias , Animales , Ratones , Microscopía/métodos , Pez Cebra , Neuronas/fisiología , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...